ACARP ACARP ACARP ACARP
Underground

Investigate Testing Facilities for Ventilation Devices and Explosion Barrier Components: Second Phase

Underground » Detection and Prevention of Fires and Explosions

Published: April 04Project Number: C12009

Get ReportAuthor: Jan Oberholzer, David Pearson | Simtars, TestSafe

This project consisted of two phases. The first phase of this project sought to determine the feasibility of using non-destructive testing methods to evaluate the strength of ventilation control devices (VCDs) to withstand the required overpressures. The second phase critically evaluated recent technical changes, made by overseas testing authorities, to destructive type testing of VCDs to facilitate the design of a local facility.

The project set out to assist the evaluation of ventilation control devices for the purposes of compliance with the Queensland regulations and to ensure maintenance of the structure's integrity. There was a serious need for the establishment of a VCD testing station within Australia, as the only place where the full range of VCDs could be tested was in overseas galleries. Testing of ventilation control devices has, and continues to be undertaken, at significant cost and effort on the behalf of manufacturers while at the same time there is no established method whereby the integrity of devices already installed in the mine can be tested.

Due to the change in the legislation as well as the development of newer destructive methods throughout the world, the paradigm under which this project started, changed significantly after March 2001. This led to alternative methods of destructive testing being considered. During the period of the project the need arose for different performance criteria for other ventilation controls devices apart from seals to be investigated as well. These studies led to the establishment of a draft standard that specified different post-explosive performance criteria than that which was originally specified. All of these changes led to the need for the non-destructive testing of ventilation control devices.

In evaluating the possible methods of non-destructive testing, it was found that the most suitable method would be one that would provide an image of the internal conditions of the structure, as well as one that would give a comparative estimate of the material strength of the components of the structure. Such methods are capital intensive and require a high level of skill from the person that does the measurement. This makes the use of such equipment a costly exercise. Simpler and more cost effective methods were identified that could be used to determine the conditions of a structure although not at the same level as the imaging methods. Meanwhile, work conducted at the Lake Lynn facility in the United States as well as in South Africa, has proven the viability of innovative methods for the destructive testing of seals and other ventilation structures at low cost. The important outcome of this research work, is the understanding that for most practical designs of VCD, as long as the pressure is applied for a sufficient period of time, at least a few tens of milliseconds, it does not matter if it is hydraulic, pneumatic or explosive. These proven methods can then be used to specify a test facility design that could be used in Australia to test both high and low strength ventilation control devices.

A surface facility is preferred due to the flexibility would afford as well as the ability to be sited more favourably with regard to the required infrastructure. For one-off testing the use of an underground cavity has not been discounted but this option is not seen as an alternative to the surface facility. There appears to be at least two attractive approaches to the design of such a test facility. These are a freestanding installation, or an extension to the current TestSafe Explosions Gallery (Londonderry NSW). A freestanding facility has the advantage of flexibility of location. An extension to the TestSafe Gallery would have a cost advantage due to the utilisation of existing infrastructure and experienced VCD testing staff. Either design could enable test pressures to be applied via a range of methods.

The anticipated cost of such a facility could be up to a half a million dollars. Although it would generate considerable safety and economy benefits to the Australian mining industry, it is doubtful if the full cost of erecting such a facility could be recovered solely from testing charges.

It is foreseen that by using this specification and refining it to suit the site-specific requirements a cost affective alternative to overseas testing could be established in Australia.

Underground

Health and safety, productivity and environment initiatives.

Recently Completed Projects

C20006Development Of An Alternative Electronic Spark Test Apparatus

In this phase of the project, CRCMining has further developed and demons...

C22003Investigation Of The Potential Lightning Impacts On Underground Coal Mines

The objective of this research was to develop and apply computer models ...

C22019Impact Of Mine Subsidence On Threatened Ecological Communities

The aim of this project was to develop and implement integrated remote s...

Underground

Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C23007Selection And Optimisation Of Risk Controls

The Australian coal mining industry recognises it is important to have e...

C19029Soil Organic Matter And Green Carbon In Rehabilitation:Their Role In The Carbon Balance

Quantifying carbon fluxes in reclaimed mining environments can define th...

C20023Mobile Sampling Of Dust Emissions From Unsealed Roads

Dust from unsealed roads has the potential to have a detrimental impact ...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C23043Product Coal Loss Due To Inappropriate Focus On Ep

The Coal Preparation fraternity is used to focussing on Ep(75/25) va...

C20047Improved Dewatering, Management And Rehabilitation Of Problematic, Clay-Rich Coal Mine Tailings

The aim of this project was to test a broad range of samples of clay min...

C23034Comparison Of Column And Mechanical Flotation Technologies

Fine coal beneficiation is virtually essential for coking coals unle...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C23055Phosphorus In Coal: Status Of Test Methods In Use And Applicability To Industry Needs

The specific objective of this study was to assess whether laboratory te...

C22039Implications Of Coking Conditions On CSR

Coking is one of the main contributors to the quality of the resultant c...

C22035Quality Of Stamp Charged Cokes And Stampability Of Coals At Small Scale

The stamp charging of coal has emerged as a widely-used, effective treat...

Technical Market Support

Mine Site Greenhouse Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C21061The Role Of Hydrogeology, In Situ Stress And Temperature Logs In The Distribution And Delineation Of Coal Seam Gas Regimes

This thesis explores mechanisms that determine coal seam gas (CSG) distr...

C23052Novel Stone Dust Looping Process For Ventilation Air Methane Abatement - Phase I

The Phase I of the project was conducted over the period between 1 J...

C22041Development Of New Generation Carbon Composites For VAM Capture

Capturing ventilation air methane (VAM) as a way of fugitive methane mit...

Mine Site Greenhouse Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

C19025Governance Strategies To Manage And Monitor Cumulative Impacts At The Local And Regional Level

ACARP levy contributors should order this report in the normal manner – ...

Mining And The Community

NERDDC

National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook

NERDDC