ACARP ACARP ACARP ACARP
Technical Market Support

Coke Reactivity and Characterisation

Technical Market Support » Metallurgical Coal

Published: March 08Project Number: C12057

Get ReportAuthor: Philip Bennett, Adrian Reifenstein, Graham O’Brien, Barry Jenkins | ACIRL, CSIRO Exploration & Mining, Jenkins-Kwan Technology

Coke quality in the blast furnace is measured by its resistance to degradation. The roles of coke as a fuel and as a reducing agent are not limiting factors in terms of blast furnace performance. However, the role of the coke as a permeable medium is crucial in economic blast furnace operation. The degradation of the coke varies with the position in the blast furnace but in all cases involves the combination of reaction with CO2, H20 or 02 and the abrasion of coke lumps against each other and other components of the burden. In trying to relate coke quality to its ultimate use in the blast furnace, one of the primary attributes of the coke quality is the coke strength.

The Coke Reactivity test is a highly regarded measure of the performance of coal.  This test has two components; the Coke Reactivity Index (CRI) and the Coke Strength after Reaction (CSR).  A coal which, when coked, achieves a low CRI value and a high CSR value is highly regarded in the market, primarily because this test has been related to blast furnace performance, particularly fuel rate and permeability of the burden.

Coal characteristics which have been shown to influence coke reactivity include coal rank, ash %, various components of the ash chemistry and full maceral reflectograms. In most Australian coals these coal characteristics account for the major proportion (~ 70%) of the variation seen in the Coke Reactivity Index (CRI) and the Coke Strength after Reaction (CSR).

It has proved difficult to quantify what controls the remainder of the variation observed in the coke reactivity test.  It is known that ash percentage and ash chemistry control variability to some extent, with some minerals or elements catalysing the gasification reaction.  However, the equations developed using these elements can, at times, be poor predictors of the CRI and CSR values.

This project examined three distinct characteristics of the coke and their impact on coke quality as defined by the NSC Reactivity test.  They were:

  • Compressive strength testing of pre-and post-reaction cokes to allow some understanding of how gasification effects coke strength.
  • The coke lump shape and surface area to volume ratios provided additional information on the gasification behaviour of coke; whether it is preferentially gasified on the surface of the coke lumps or whether it is a pervasive effect.  
  • The structural elements of the coke included porosity and fissure formation.  These elements were considered to impact on coke reactivity because they have some affect on permeability of the coke and thus the ability of reducing gases to penetrate into the coke lumps.  

Together these tests provided a more complete understanding of how the nature of coke influences the coke's inherent reactivity and strength.

The CRI of the cokes produced in this project followed the same relationship with CSR as other cokes in ALS-ACIRL's extensive database of coking test results.  The optimum maximum reflectance range for low CRI and high CSR is 1.3 to 1.5%. General trends, such as decreasing CRI (increasing CSR) was associated with increasing semifusinite and increasing CRI (decreasing CSR) was associated with increasing liptinite and vitrinite, were found in this project.   There is a lack of strong relationships between macerals and coke microtexture; this was also found by Sharma et al. [2005]. There was no evidence that more of one microtexture was consumed due to the greater reaction with CO2 of the crushed coke compared to the cored coke.  This implies that the more reactive microtextures, such as non porous isotropic derived from inertinite, are consumed early in the test and the remaining less reactive material in consumed at a constant rate. It was shown that the difference in reactivity of the crushed and cored samples is only due to the shape of the particles. Thus, accicular coke, with a larger surface area compared to more equant or blocky coke, should give a higher CRI.  To determine the extent that shape will influence the CRI all that is required is for the equivalent spherical diameter to be calculated for the coke tested. For the coals used in this project, there was minimal difference in shape of the crushed cokes and this could be due to the crushing required to prepare the sample for the reactivity test.

The compression test proved to be a good indicator of the inherent strength of coke.  The simple sample preparation and testing allowed the testing of 40 samples of the pre reactivity cokes and over 30 samples of the post reactivity cokes.  It was shown that the Young's modulus of surface breakage of the cored particle was lower than the Young's modulus of the unconfined compression breakage and therefore surface breakage would be the initial breakage mode of a particle of unreacted coke for the coals used in this project.  This was not the case for coke after reaction with CO2 where the Young's modulus of surface breakage was similar or in some cases higher than the Young's modulus of the unconfined compression.  The Young's modulus for surface breakage of the pre reactivity coke decreased with porosity and number of pore walls greater than 50 µm.

The relationship between CSR and compressive strength post reactivity followed the trend as that suggested by Andriopoulos et al. [2002] where drum related matters moderate the effect of the bulk material property.  The compression test gave a better differentiation for the higher strength cokes.

Porosity was found to have a major influence on coke strength, which suggests that coke textures play only a minimal role in determining coke strength.  There was only a general trend that indicated that there is a minimum in porosity corresponding to the optimum Romax for maximum pre reactivity coke strength.  The vitrinite concentration had a strong influence on the formation of large pores and therefore porosity.

The porosity increases after reaction with CO2 thus leading to weakening of the coke structure.  This increase in porosity can not be directly related to the rank or macerals of a coal, though the increase in porosity depends on rank of the coal and the microtexture of the coke. There was no evidence that the increase in porosity was limited to the edges of the coke.  The non-porous isotropic microtexture, roughly related to the inertinite macerals other than semi fusinite, does contribute to the loss in strength of the post reactivity coke, but seems to be rank dependent with the lower rank coals suffering a greater reduction in coke strength.  Coals with a Romax greater than 1.3% did not show an increase reduction in coke strength post reactivity test with increasing inertinite less semi fusinite.  Coke microtexture analysis was not done on the post reactivity coke.  However, a subjective visual inspection of some coke images suggested a decrease in inertinite-derived material in the post reactivity.  

Not all of the reduction in coke strength, especially for coals with a reflectance below 1.3%, could be attributed to the amount of non-porous isotropic microtexture.  By examining the different grey levels in the images it was found that material with a grey level between 75 (reflectance ~ 7%) and 110 (reflectance ~ 9%), called grey 2 material, was lost from the coke structure for coals with a Romax of less than 1.3%.  In this rank range and when the grey 2 material was concentrated in small pore walls then there is a large reduction in coke strength due to the attack of this material by CO2. For coals with a reflectance less than 1.3%, this grey 2 material correlated with the sum of the fused carbon domains very fine and fine.

These results highlight the need to associate the coke microtexture with the microstructure.  That is, the size and composition of pore walls have a strong influence on the changes that occur within the coke due to reaction with CO2 and therefore on coke strength after reaction.

Underground

Health and safety, productivity and environment initiatives.

Underground

Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C9068Monitoring Geomorphic Processes In Bowen Basin River Diversions

The project is combined with C8030, please see C21030Voltage Stabilisation Using Power Electronics.

ACARP project C21030 looked at the applicability of using power electron...

C21042Microclimate Re-Vegetation Monitoring

Most mine sites within Australia have specific rehabilitation obje...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C24004Coal Preparation Field Promotion 2014

As the sole purpose of this project was to raise awareness of ACARP coal...

C21051Plant-Based Investigations Of Hydrodynamic Behaviours In Large Coal Flotation Cells

 

The performance of flotation cells can be impaired by the ...

C21046Washability Analysis Of Fine Coal Using A Water-Based Method

The aim of this project was to develop a water-based method for generati...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C22038Prediction Of Electrostatic Precipitation Performance

The collection efficiency of fly ash from Australian thermal coals in el...

C21059Estimating The Fusible Content Of Individual Coal Grains And Its Application In Coke Making

For coals of suitable rank the vitrinite, liptinite and some of the iner...

C19009The Minamata Convention On Mercury Implications And Responses For The Coal Industry

The objectives of this ACARP project were twofold:

· To produ...

Technical Market Support

Mine Site Greenhouse Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

c21064Development Of A Catalytic Mitigation System For VAM_ 20 Litre Per Minute VAM Flow Technical Development Unit Scale Up And Preliminary Process Design_ Stage Two Interim Report

STAGE TWO

This is an interim report describing work under...

C21062Instrumentation For Measuring Fugitive Emissions In Ventilation Air From Underground Coal Mines

Fugitive emissions are the largest source of greenhouse gas emissions fr...

C19057Linear Gas Flow Measurement System For Gas Drainage Boreholes

Requests for this project report will also receive a copy of C17056.

...

Mine Site Greenhouse Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C19025Governance Strategies To Manage And Monitor Cumulative Impacts At The Local And Regional Level

ACARP levy contributors should order this report in the normal manner – ...

C16036Cumulative Impacts: A Good Practice Guide For The Australian Coal Mining Industry

ACARP levy contributors should order this report in the normal manne...

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

Mining And The Community

NERDDC

National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook

NERDDC