ACARP ACARP ACARP ACARP
Coal Preparation

Improving The Performance Of Froth In Coal Flotation Using Saline Water

Coal Preparation » Fine Coal

Published: May 14Project Number: C21048

Get ReportAuthor: Tony Wei, Yongjun Peng, Sue Vink | University of Queensland

Froth stability is known to play an important role in determining mineral flotation recovery and selectivity. Overly stable froth causes high entrainment of gangue minerals in flotation and is difficult to handle in downstream processes. On the other hand, unstable froth is associated with the low recovery of valuable minerals. Therefore, correct froth stability is of utmost importance in flotation.

 

Despite the importance of froth stability, many coal flotation plants encounter overly stable froth problems especially when saline water is used. For example, at a fine coal flotation plant in Queensland, over-frothing occurs due to the formation of stable froth. Residual froth layers on filters cause high moisture of flotation products. Breaking down the froth with water sprays exacerbates the moisture problem. To meet the moisture requirement in the final product, the mass pull of flotation concentrates has to be reduced, resulting in the loss of combustible matter in flotation tailings. Over-frothing in pump boxes, tanks and thickeners causes poor handleability and interferes with the normal plant operation. This is a popular problem in coal flotation plants but barely reported in literature.

 

The objectives of the study are to identify major potential factors contributing to the generation of overly stable froth in coal flotation using saline water with the fine flotation plant chosen as a case study, and then to propose possible solutions to overcoming problems resulting from the overly stable froth. Several methods of froth stability measurements have been suggested in the literature. However, controversy exists in the validity and accuracy of these methods and currently there is no specific criterion to quantify froth stability. In order to achieve the objectives of the study, the advantages and disadvantages of these methods were compared against each other by reviewing relevant literature and by experimental testing. The most appropriate method for froth stability measurement in laboratory identified for this study was the air recovery method and an altered version of this method by determining the vertical movement velocity of froth was employed.

 

Factors affecting froth stability have been previously identified in literature, including reagent suite (frother, collector, activator, depressant), particle properties (size, shape, hydrophobicity, solid density), operation conditions (conditioning of feed, temperature, air flowrate, pH), and water quality. After the consideration of laboratory and minesite conditions, coal particle size, process water quality, frother and collector dosages were chosen to be investigated in this study since they may be manipulated to overcome the overly stable froth problems.

 

The results of this study showed that the stability of froth produced by coal flotation depends on coal particle size, process water quality, and chemical reagents (diesel and MIBC). Fine coal particle size of -106 µm produced higher air recovery than coarser particle size of +150-250 µm and +355-500 µm when either plant process water or de-ionised water was used. It is proposed that fine particles concentrate along the air and solution boundary line, slowing the normal drainage process and therefore stabilising the connection between bubbles and the solution with simultaneous high froth stability. Flotation with process plant water produced higher air recovery than de-ionised water for all the classes of coal particle size fractions probably due to the compression of electrical double layers around the particles and the reduction of double layer interactions caused by salts resulting in the thinning and rupture of the wetting film between the particles and bubbles as identified in literature. Flotation in the absence of diesel or MIBC produced lower air recoveries than flotation with both diesel and MIBC. Diesel rendered the surface of coal particles more hydrophobic, which strengthens the affinity between coal particles and air bubbles while MIBC inhibits bubble coalescence, producing more stable froth.

 

Several methods were proposed and tested to reduce froth stability when plant process water was used. Mixture of coarse coal with fine coal (20% +500-710 µm 80% -106 µm), dilution of process water (50% process water 50% de-ionised water) and reduction of chemical reagents usage (no diesel addition or no MIBC addition) all reduced froth stability in flotation. However, the flotation of coal with only diesel and flotation with only MIBC could reduce overly stable froth issues while achieving acceptable combustible and mineral matter recoveries.

 

The interaction of chemical reagents with salt concentrations was also studied to provide a guideline to adjust reagent concentrations based on variations in process water conductivity. Central composite rotatable statistical design was conducted and indicated a clear interaction between salts and chemical reagents in determining froth stability and flotation performance. The interaction of salts with MIBC increased froth stability and decreased combustible matter recovery while the interaction of salts with diesel decreased combustible matter content. If the process plant is faced with low or medium salinity water, high or medium frother and collector dosages should be used, respectively, to avoid overly stable froth while maintaining good flotation performance. On the other hand, if the plant is faced with high salinity water, low frother and collector dosages should be used.

 

While this study developed strategies to avoid overly stable froth from coal flotation for the coal industry, dewatering characteristics of flotation concentrates with high air recoveries were examined to investigate the effect of entrained air bubbles in the concentrates on the final coal moisture. The dewatering characteristics of coal slurries prepared without flotation and with minimal air entrainment were also studied for comparison with aerated flotation products. Air recovery was shown to cause an adverse effect on the coal dewatering characteristics particularly for coal flotation concentrates obtained by using fine coal in saline water. It is proposed that the entrained air bubbles in the flotation concentrates obstruct and impede the flow of water out of filter cakes, resulting in shorter cake formation and filtration time and increasing the final coal cake moisture. This study suggests to improve the dewatering efficiency by de-aerating the flotation concentrates.

Underground

Health and safety, productivity and environment initiatives.

Recently Completed Projects

C34019Longwall Bretby Cable Handling Monitoring With Fibre Optics

This project examined the potential of using fibre optic sensing tec...

C27049Mine Machine Radar Sensor Integration

The aim of this project was to develop an integrated radar sensor an...

C29007Innovative Coal Burst System To Investigate The Influence Of Confinement Loss And Pre-Conditioning On Coal Burst Mechanism

The challenges associated with designing and operating a safe and pr...

Underground

Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C33035High Water Recovery, Low Cost Desalination Using PV-Powered Membrane Capacitive Deionisation (Mcdi)

Capacitive deionization is a robust, energy efficient and cost effec...

C28035Topsoil Deficits In Site Rehabilitation Accelerated Transformation Of Spoils To Functional Soils

The incorporation of commercial biological amendments (compost, worm...

C34036Tyre Handler Testing Rig Stage 2: Lifting Trials

Tyre handling is a major source of risk in surface mining operations...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL)

This third and final stage of this project was the culmination of a ...

C29069Low-Cost Catalyst Materials For Effective VAM Catalytic Oxidation

Application of ventilation air methane (VAM) thermal oxidiser requir...

C23052Novel Stone Dust Looping Process For Ventilation Air Methane Abatement

This multi‐phase project is concerned with the mitigation of m...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community

NERDDC

National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook

NERDDC