Coal Preparation

Online Particle Size Monitoring in Coal Preparation

Coal Preparation » Fine Coal

Published: April 17Project Number: C24046

Get ReportAuthor: Brad Garraway | QCC Resources

The principle of using laser diffraction as a means of measuring a volume size distribution in slurry is well established. Laboratory devices have been in use since the 1960's for monitoring ultrafine solids in cosmetics, pharmaceuticals, paper manufacture and minerals processing.

Outotec have produced an industrial version of the well-known Malvern laboratory laser sizing device that can be installed as a real time online instrument for use in monitoring, process control and quality assurance of fine particle streams. This industrialized version is known as the PSI500i  particle size analyser.

The PSI500i installation base has a global reach of over 100 units in mineral processing. These analysers are mainly employed in monitoring and control of grinding circuits. In Australia, the analyser has found application at 15 sites, again principally in grinding circuits for base metals and gold concentrators.

At the time of initiating this project, an analyser had been purchased but not installed for a Queensland coal preparation plant.

The PSI500i consists of an inline pipe sampler where a cutter extracts a continuous sample for analysis. The sample is diluted and analysed for particle size distribution (all within the PSI500i analyser unit) and accurately produces sizing results for streams with particle sizes in the 0 to 0.5 mm particle size range. The cycle time for the device from sample extraction to reporting is approximately 3 minutes.

For this project trial, the PSI500i was installed at a Coal Preparation Plant in the Hunter Valley region on the overflow stream from a classifying cyclone cluster. For the purpose of this study the device was a standalone instrument; it was not linked to the existing plant's PLC and was not used to control any device in the existing plant.

This project was concerned with three key investigations; determining the robustness of the PSI500i unit in an operational coal plant, comparison of the PSI500i reported sizing distribution with industry standard sieve analysis, and identification of potential applications of the technology within the coal industry.

During the trial, the PSI500i unit was found to be prone to computer memory failures leading to low continuous availability of reported data. However, the poor machine availability is not considered to be representative of the application to coal but very likely related to transport damage and limitations of the test plant installation. If an undamaged machine was installed as a permanent system, connected to the site control system, with a potable water supply and uninterruptable power supply, the reliability would be expected to be similar to that proven at other sites.

Comparison between the laboratory sieve analysis and the laser diffraction results found an offset between the two distributions. This was not unexpected, as the sieve analysis will tend to report the second smallest dimension of a particle and the laser diffraction analysis reports a spherical volume equivalent diameter. This highlights the importance of aligning the sizing and analysis method with the intended purpose of measuring the size distribution in the first instance.

Whilst neither of these numbers is incorrect, the spherical volume equivalent diameter was converted to a cubical volume equivalent dimension, considered to be more representative of coal particles, using a shape correction factor. This results in a better agreement between the laboratory analysis and the measured results at the larger particle sizes but tends to diverge as the particle size approaches 0.038 mm. At this size range as the particle size decreases, the mineral content of the particles tends to increase making the cubical shape factor less applicable. The laser diffraction solids distribution is a volumetric calculation and the sieve analysis is a mass calculation which may also affect the result as the volumetric calculation will under represent the finer particles with higher mineral content and thus denser particles when compared to mass bases analysis.

Further work is required to define the optimum shape factor for the cyclone overflow and investigate whether different shape factors can be applied by particle size to improve the correlation between the two results. However, while the sieve analysis is very important to the performance of screening operations, it is not necessarily important for cyclone performance or ultrafine coal operations where other measurements may drive performance.

A number of applications in which a rapid particle size measurement would be advantageous in a coal preparation plant were identified.

The PSI500i can accept feed streams from up to 3 different sample points; therefore it would be possible that one device could service a number of applications.


Health and safety, productivity and environment initiatives.

Recently Completed Projects

C23005Use Of Plastic Metal In Underground Coal Mines For Minor Repair On Flameproof Equipment

The potential for a gas or dust explosion arising from hot work and ...

C25070Shuttle Car Steering System Optimisation

The condition of roadways in underground mines is of great importance, a...

C24015 Convergence Based Roof Support Design

The aim of this project was to develop a roof support design approach th...


Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C21028Automated Design Of Multi-Pass Dragline Strips Using 3D-Dig

This project aimed  to research, develop and implement a design...

C25030Guidelines For Coal Mine Open Pit Final Void Closure And Relinquishment - Addressing Uncertainty In Coal Mine Environmental Planning

This report addresses uncertainties faced by coal mine operators whe...

C24064Top Of Coal Detection In A Rotary Air Blast Drill Rig

Accurately detecting the approaching top of a coal seam prior to bla...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C24046Online Particle Size Monitoring In Coal Preparation

The principle of using laser diffraction as a means of measuring a v...

C24048Thickener Underflow Monitor

The aim of this project was to develop an instrument that is capable of ...

C24044RFID Residence Time Modelling

The project had two main objectives, the first to provide residence ...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C24060Structural Differences Between Coking Coals Of The Sydney Basin And Other Sources

Cokes made from Australian coals of relatively low fluidity can have...

C25045Stage One - Assessment Of In Situ High-Temperature Strength Of Cokes

A typical high-CSR Australian coke was subjected to high-temperature...

C24053Effect Of Coke Reactivity Upon Coke Strength With Focus On Microstructure

The primary aim of this project was to examine changes in the microstruc...

Technical Market Support

Mine Site Greenhouse Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C19054VAM Enrichment With A Two-Stage Adsorption Process

Treatment of ventilation air methane (VAM) with cost-effective technolog...

C24017Improving Methods For Quantifying Fugitive Emissions From Open Cut Coal Mining

Fugitive emissions from open cut coal mines are usually estimated fo...

C21065Flame Arresting Mechanisms And Flameproof Device For VAM Mitigation

The overall goal of this project was to study the gas flammability limit...

Mine Site Greenhouse Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

C19025Governance Strategies To Manage And Monitor Cumulative Impacts At The Local And Regional Level

ACARP levy contributors should order this report in the normal manner – ...

Mining And The Community


National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook