ACARP ACARP ACARP ACARP
Underground

Dynamic Response Of Longwall Systems And Their Relationship To Caving Behaviour

Underground » Strata Control and Windblasts

Published: February 14Project Number: C20032

Get ReportAuthor: Terry Medhurst | PDR Engineers

Massive strata overburden units are known to influence support loading on longwall faces. Past studies of the conglomerates in NSW and sandstones in Qld have identified factors such as unit thickness, proximity to coal seam, immediate roof strength and panel width that may all play a role in support loading and in the development of adverse ground conditions. Other controls such as cut height, cutting method, hydraulic supply, leg pressure control parameters and yield settings can also influence ground behaviour.

 

It is well known that face stoppages and/or differences in retreat rate can affect mining performance. What is unclear is the influence of time related strata response on support loading and its relationship to the factors such as those described above. There is a need to develop a view to understanding the relative changes in behaviour from one set of conditions to the next.

 

The interaction between longwall supports and the surrounding strata is a complex phenomenon. At present neither empirical nor numerical models can adequately capture the critical factors required to predict strata response. However, recent advances in the ability to analyse longwall monitoring data such as that developed by Longwall Visual Analysis (LVA) provide a potentially large and valuable data source to quantify time related factors. It also provides a means in which to assess how operational practice can influence shield behaviour.

 

Through previous ACARP projects we have developed an approach to characterise ground conditions using borehole geophysical logs. One aspect of this is the Geophysical Strata Rating (GSR), a rating scheme devised for coal bearing strata. Using geophysics data provides a high density and cost effective means of gathering geotechnical information that enables development of 2D and 3D models of strata characteristics. The project aimed to take advantage of GSR estimates to provide a practical means to classify or identify features that affect caving behaviour.

 

Project objectives

The main objective of this project was to analyse various longwall operations using the GSR to characterize the strata, assess the likelihood of weighting and then correlate this with the various outputs that can be provided by LVA. A significant advantage of integrating GSR and LVA datasets is to allow a 3D spatial understanding to be developed between strata characteristics and various support loading related parameters. Data from three sites were used for the study namely, Moranbah North, Dendrobium and Newlands Mines as they represented a range of conditions and locations.

 

Through a combination of strata characterisation, interrogation of monitoring data, statistical analysis and geotechnical modelling the aim was aim to identify the key factors affecting longwall ground response and their relationship to caving behaviour. Outcomes were anticipated to include a measure of the likelihood of weighting events, potential for development of face cavities and criteria to assist in future longwall support design, strata characterisation and face management.

 

Main findings and conclusions

A caving chart has been developed based on a combination of previous experience in longwall support assessment, strata characterisation, leg pressure data analysis and caving behaviour. The chart provides a link between strata conditions, stresses, panel layout and anticipated support loads via design thresholds that are related to roof convergence. The intent is to provide a means to assess the risk of cavities in the immediate roof and/or the risk of heavy weighting from the overlying roof units.

 

Three case studies are provided that test the capabilities of the caving chart in terms of differences in strata conditions and panel layout. It is also demonstrated that whilst the risks were similar, the causes of instability were different. At Moranbah North, the influence of different support types over similar conditions with a weak coal roof and supercritical layout were investigated. It is suggested that geotechnical factors had a considerable influence, which have driven a change in system design that subsequently appears to have enabled operational improvements.

 

At Dendrobium, an interbedded roof in a deeper, sub-critical layout was investigated. Instability appears to have been partly driven by the presence of weak interbedded roof below a channel but also probably due to a longwall system working at the limit of its capability. This has probably resulted in an uncertain operational environment leading to further instability. At Newlands, it appears that geotechnical conditions, i.e. relatively shallow conditions with strong coal roof have been made more difficult through poor system availability and associated limitations in operational response.

 

In reviewing the data it is evident that the caving chart can provide the broader setting for design, risk assessment and planning whilst longwall monitoring data can be used to disseminate key parameters from the daily records. A direct convergence estimate using leg pressure data will obviously be augmented in future by convergence monitoring. This will be a useful advance.

 

Convergence estimates from any particular shield alone however is unlikely to provide the necessary detail for a reliable real-time cavity risk indicator. A more sophisticated algorithm that uses each part of the load cycle in conjunction with continuous load rate and direct convergence measurement will be required for short-term longwall face stability assessment. The algorithm will also need to incorporate factors such as number and effect on adjacent supports, standing time and the influence of varying set pressure on each load cycle. This is likely to require site-specific assessments that take account of operating practice, longwall support configuration and prevailing ground conditions in order to provide a reliable quantitative outcome.

 

Cavity risk indicators such as the CRI or other parameters are a welcome addition to longwall TARPs. In this study a caving chart has been developed that aims to provide the setting in which different TARPs may apply. In doing so it is hoped that it will assist in defining relevant controls albeit operational or otherwise.

Underground

Health and safety, productivity and environment initiatives.

Recently Completed Projects

C33009Ceramic Wall Flow Filter Commercialisation

The purpose of the project was to develop a commercially available a...

C29019Mechanical Assessment Of Time-Dependent (Creep) Behaviour Of Coal And Coal Measure Rocks Under Uniaxial And Triaxial Conditions

This project focuses on long term pillar stability and strata, as we...

C34007Evaluating Toxicity Of Different Types Of Respirable Crystalline Silica Particles To Lung Cells And Tissues

Silica dust represents one of the most significant occupational haza...

Underground

Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C36019Development Of An In-Situ Slew Bearing Scanner For Shovels

This report details the development steps for a new in-situ slew bea...

C33036Radar Tyre Monitor System

This project focussed on trialling a radar sensing technology design...

C26020Preventing Fatigue Cracking Via Proactive Surface Dressing

Fatigue cracking of plant and equipment presents a significant chall...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Recently Completed Projects

C35036Autonomous Stockpile Dozing: Quantifying Viability

The automation of bulldozer operations on stockpiles presents a sign...

C35024Froth Fotation Predicted V Actual Definition

Correct outcomes in froth flotation yield predictions for product as...

C35032Improving The Dewatering Of Fine Coal Tailings By Minimising Micro-Nano Bubbles

Dewatering of fine coal tailings remains a major operational challen...

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C35043Abrasion Resistance Of Coke Under Hydrogen Reduction Blast Furnace Conditions

The hydrogen enriched blast furnace is emerging as a viable alternat...

C35039Impact Of Coal Grain Composition And Macerals Association On Fluidity Development In Australian Coals

The coke quality prediction models use thermoplastic terms as key ex...

C36004Physical And Chemical Structure Characterisation Of Biomass For Biocoke Production

Partial substitution of coking coal with renewable biomass is identi...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C34066Safe Operation Of Catalytic Reactors For The Oxidation Of VAM Operating Under Abnormal Reaction Conditions

The catalyst Pd/TS-1 has shown excellent activity in oxidising venti...

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL)

This third and final stage of this project was the culmination of a ...

C29069Low-Cost Catalyst Materials For Effective VAM Catalytic Oxidation

Application of ventilation air methane (VAM) thermal oxidiser requir...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community

NERDDC

National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook

NERDDC