ACARP ACARP ACARP ACARP
Coal Preparation

Development of Automatic Control Techniques for New Flotation Technologies

Coal Preparation » Fine Coal

Published: April 99Project Number: C5050

Get ReportAuthor: Anne Lahey, Chris Clarkson | C Clarkson and Associates

The primary objective of this project was to develop practical process control procedures to automate and optimise the new flotation technologies using currently available equipment.

This was achieved by fulfilling a series of secondary objectives, which included a study of the operational performance of the Jameson Cells at full plant scale and investigation of their response to changes in the key operating parameters. Based on the results of the test work programme and reviews of current plant operating philosophies, optimisation and control procedures have been developed. These allow the Jameson Cells to be operated at their optimum with respect to the overall plant performance.

Control of flotation in conventional cells has been extensively studied for many years and trials integrating on-line analysers with full plant circuits have successfully demonstrated that good control is possible. However, such control loops have seldom been implemented on a permanent basis for a variety of reasons. The predominant form of conventional flotation control has been automatic level control with a manually determined setpoint and manual control of reagents.

In recent times, the installation of the newer, high intensity, column-style flotation cells, typified by the Jameson Cell and Microcel, has been favoured by the Australian coal industry for the combined treatment of the full fines fraction. To improve the viability of this equipment, a greater understanding of the operating parameters was needed. Earlier test work demonstrated that the column-style units, with their deep froths and higher frother consumption, respond to feed and operational variables in a different manner to conventional cells. Consequently, these units require a different control philosophy to ensure they are operated at their optimum.

The results of this programme established that the frother dosage was the most useful short-term operating parameter to control and adjust the flotation process up and down the yield-ash curve. Wash water addition was the second major parameter that should be addressed, but once optimal levels are established it should be maintained at the required flow rate with uniform distribution.

Optimum values for the remaining variables (diesel dosage, froth depth and air rate) should be determined via metallurgical test work post-commissioning. A 'set and forget' strategy can then be adopted if the response of the flotation process to minor changes in their settings has minimal effect on performance. This simply ensures operation at or near their optimum level. Periodic metallurgical checks in response to long-term feed changes or plant operational changes should still be performed.

This approach may not be applicable at all sites, and each will ultimately have to be evaluated according to its particular needs.

Experience at both Goonyella and Riverside, as well as other sites such as Peak Downs, indicates that the new flotation technologies are more robust in their operation compared to the conventional flotation cells they replaced. Once they have been optimised and the settings fine-tuned, they can potentially operate relatively efficiently and produce low ash concentrates with minimal operator intervention.

Underground

Health and safety, productivity and environment initiatives.

Recently Completed Projects

C34019Longwall Bretby Cable Handling Monitoring With Fibre Optics

This project examined the potential of using fibre optic sensing tec...

C27049Mine Machine Radar Sensor Integration

The aim of this project was to develop an integrated radar sensor an...

C29007Innovative Coal Burst System To Investigate The Influence Of Confinement Loss And Pre-Conditioning On Coal Burst Mechanism

The challenges associated with designing and operating a safe and pr...

Underground

Open Cut

Safety, productivity and the right to operate are priorities for open cut mine research.

Recently Completed Projects

C33035High Water Recovery, Low Cost Desalination Using PV-Powered Membrane Capacitive Deionisation (Mcdi)

Capacitive deionization is a robust, energy efficient and cost effec...

C28035Topsoil Deficits In Site Rehabilitation Accelerated Transformation Of Spoils To Functional Soils

The incorporation of commercial biological amendments (compost, worm...

C34036Tyre Handler Testing Rig Stage 2: Lifting Trials

Tyre handling is a major source of risk in surface mining operations...

Open Cut

Coal Preparation

Maximising throughput and yield while minimising costs and emissions.

Coal Preparation

Technical Market Support

Market acceptance and emphasising the advantages of Australian coals.

Recently Completed Projects

C34060In-Situ Investigation Of Coke Structure Formation Under Stamp Charged Coking Conditions

Stamp charged cokemaking has emerged as an effective technique to im...

C34062Improving The Classification Of Microstructure Distribution In Coke CT Images Using Deep Learning And Lineal Path Calculations

This project builds on a number of earlier projects that have helped...

C29071Source Of Variability Of Reactivity Of Coke In The CSR Test

The Coke Strength after Reaction (CSR) test is used worldwide to det...

Technical Market Support

Mine Site Greenhouse Gas Mitigation

Mitigating greenhouse gas emissions from the production of coal.

Recently Completed Projects

C28076Selective Absorption Of Methane By Ionic Liquids (SAMIL)

This third and final stage of this project was the culmination of a ...

C29069Low-Cost Catalyst Materials For Effective VAM Catalytic Oxidation

Application of ventilation air methane (VAM) thermal oxidiser requir...

C23052Novel Stone Dust Looping Process For Ventilation Air Methane Abatement

This multi‐phase project is concerned with the mitigation of m...

Mine Site Greenhouse Gas Mitigation

Low Emission Coal Use

Step-change technologies aimed at reducing greenhouse gas emissions.

Recently Completed Projects

C17060BGasification Of Australian Coals

Four Australian coals were trialled in the Siemens 5 MWth pilot scale ga...

C17060AOxyfuel Technology For Carbon Capture And Storage Critical Clean Coal Technology - Interim Support

The status of oxy-fuel technology for first-generation plant is indicate...

C18007Review Of Underground Coal Gasification

This report consists of a broad review of underground coal gasification,...

Low Emission Coal Use

Mining And The Community

The relationship between mines and the local community.

Recently Completed Projects

C16027Assessing Housing And Labour Market Impacts Of Mining Developments In Bowen Basin Communities

The focus of this ACARP-funded project has been to identify a number...

C22029Understanding And Managing Cumulative Impacts Of Coal Mining And Other Land Uses In Regions With Diversified Economies

The coal industry operates in the context of competing land-uses that sh...

C23016Approval And Planning Assessment Of Black Coal Mines In NSW And Qld: A Review Of Economic Assessment Techniques

This reports on issues surrounding economic assessment and analysis ...

Mining And The Community

NERDDC

National Energy Research,Development & Demonstration Council (NERDDC) reports - pre 1992.

Recently Completed Projects

1609-C1609Self Heating of Spoil Piles from Open Cut Coal Mines

Self Heating of Spoil Piles from Open Cut Coal Mines

1301-C1301Stress Control Methods for Optimised Development...

Stress Control Methods for Optimised Development and Extraction Operations

0033-C1356Commissioned Report: Australian Thermal Coals...

Commissioned Report: Australian Thermal Coals - An Industry Handbook

NERDDC